

A-LEVEL MATHEMATICS

MS2B – Statistics 2B Mark scheme

6360 June 2016

Version: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

Copyright $\ensuremath{\mathbb{C}}$ 2016 AQA and its licensors. All rights reserved.

AQA retains the copyright on all its publications. However, registered schools/colleges for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Key to mark scheme abbreviations

Μ	mark is for method
m or dM	mark is dependent on one or more M marks and is for method
А	mark is dependent on M or m marks and is for accuracy
В	mark is independent of M or m marks and is for method and
	accuracy
E	mark is for explanation
or ft or F	follow through from previous incorrect result
CAO	correct answer only
CSO	correct solution only
AWFW	anything which falls within
AWRT	anything which rounds to
ACF	any correct form
AG	answer given
SC	special case
OE	or equivalent
A2,1	2 or 1 (or 0) accuracy marks
–x EE	deduct x marks for each error
NMS	no method shown
PI	possibly implied
SCA	substantially correct approach
С	candidate
sf	significant figure(s)
dp	decimal place(s)

No Method Shown

Where the question specifically requires a particular method to be used, we must usually see evidence of use of this method for any marks to be awarded.

Where the answer can be reasonably obtained without showing working and it is very unlikely that the correct answer can be obtained by using an incorrect method, we must award **full marks**. However, the obvious penalty to candidates showing no working is that incorrect answers, however close, earn **no marks**.

Where a question asks the candidate to state or write down a result, no method need be shown for full marks.

Where the permitted calculator has functions which reasonably allow the solution of the question directly, the correct answer without working earns **full marks**, unless it is given to less than the degree of accuracy accepted in the mark scheme, when it gains **no marks**.

Otherwise we require evidence of a correct method for any marks to be awarded.

Q1	Solution	Marks	Total	Comments
	Throughout parts (a) to (d)			Unsupported correct answers score full marks
(a)	0.703	B1	1	AWRT
(b)	$e^{-2.3} + e^{-2.3} \times 2.3$ (= 0.100 + 0.231) (= 0.331) 1 - ($e^{-2.3} + e^{-2.3} \times 2.3$) = 0.669	M1 A1 A1	3	PI For either $P(X=0)$ or $P(X=1)$ For both $P(X=0)$ and $P(X=1)$ or sum AWRT 0.669
(c)	<u>Use</u> of Po(6)	M1		0.7440, 0.8472, 0.9161, 0.9799, 0.9912 or 0.9964 seen
	0.9799 for top value - 0.8472 for bottom value Or $e^{-6} \left(\frac{6^9}{6} + \frac{6^{10}}{6} + \frac{6^{11}}{6} \right)$	A1		AWFW 0.9798 to 0.9800 AWFW 0.8470 to 0.8473 A1 for either of these values or this expression OE
	= 0.1327 = 0.133	A1	3	AWRT 0.133
(d)	Use of Po(0.8)	M1		Correct formula or 0.9526 or 0.8088
	$e^{-0.8} \times 0.8^2/2$ or 0.9526 - 0.8088 = 0.1438 = 0.144	m1 A1	3	AWRT 0.144
(e)	$(1 - 0.0111) \times (1 - e^{-2.3}) \times (1 - 0.3012)$	B1 M1		For any one of these seen or PI by the correct value seen (3 sf or better) For all three correct and multiplied PI
	0.9889 × 0.8997 × 0.6988 = 0.622	A1	3	AWRT
			13	

Q2	Solution	Marks	Total	Comments
	\bar{x} or $\mu = (32.93 + 30.47) \div 2 = 31.7$	B1		CAO \overline{x} or μ not necessary but do not ISW. If contradictory value for μ seen then B0.
	$t_9 = 2.262$	M1		AWRT 2.26
	$(32.93 - 30.47) = (2 \times 2.262 \times s) \div \sqrt{10}$	m1		OE single correct equation with only s or σ unknown
	$s = 1.72$ so unbiased estimate for σ^2 is 2.96	A1	4	AWFW 2.95 to 2.96 Final answer 1.72 earns M1 m1 A0
			4	

Q3	Solution	Marks	Total	Comments
(a)	0.35	B1		CAO or equivalent fraction or %
			1	
(b)	P(<3) = 0.45	B1		
	'0.35' × '0.45' (= 0.1575)	M1		Their 0.35 and 0.45
	× 2 = 0.315	A1		CAO or equivalent fraction or %
			3	
(C)	Mean = $1 \times 0.19 + 2 \times 0.26 + 3 \times 0.20 +$			
	$4 \times 0.13 + 5 \times 0.07 + 6 \times 0.15$	M1		This working, or the next line, must
				be seen (at least 3 products)
	= 0.19 + 0.52 + 0.60 + 0.52 + 0.35 + 0.90			
	= 3.08	A1		CAO. AG.
	Variance = $1^2 \times 0.19 + 2^2 \times 0.26 + 3^2 \times 0.20 +$			
	$4^2 \times 0.13 + 5^2 \times 0.07 + 6^2 \times 0.15 - 3.08^2$	M1		PI
	= 2.77(36)	A1	_	AWFW 2.77 to 2.78
			4	
(d)	No probability of 0 books borrowed			Cannot borrow no books
	and a small shift of a small have O have be			
	and no probability of more than 6 books.			Cannot borrow more than 6 books
	Wrong chang or probability increases at top	E210		E1 for each of those 2 distinct points
	and	EZ, I,U		E 1 101 each of these 3 distinct points
	ena.		2	up to a maximum of 2 marks
(e)(i)	$10 \times 3.08 - 30.8$ (pence)	B1	<u> </u>	CAO 31 without 30.8 seen scores
	10 × 3.00 = 30.0 (perice)	ы		B0
(ii)	$(2.7736' \times 100 = (277.36')$ then $\sqrt{(277.36')}$	M1		For their variance x 100 and $$
()				
	= 16.7 (pence)	A1		AWFW 16 to 17
	or			
	√'2.7736' = '1.66… ', '1.67' × 10	(M1)		For $\sqrt{10}$ their variance and $\times 10$
	= 16.7 (pence)	(A1)		AWFW 16 to 17
	Where working is in £ in (i) or (ii) or both			
	(i) £0.308	(B1)		Must show £ sign
	(ii) '2.7736' × 0.01 = 0.027736			
	√'0.027736'	(M1)		For their variance × 0.01 and \checkmark
	= £0.167	(A1)		AWFW 0.16 to 0.17. Must show £
	Or			sign _/
	√'2.7736' = '1.66 ', '1.67' × 0.1	(M1)		For $\sqrt{1}$ their variance and $\times 0.1$
	= £0.167	(A1)		AWFW 0.16 to 0.17. Must show £
			-	sign
			3	
			13	

Q4	Solution	Marks	Total	Comments
(a)	10	B1		CAO
			1	
(b)	$0.07 \times 10 = 0.7$	B1		OE
			1	
(c)(i)	$E(X) = \frac{1}{20}$	B1		Decimal or fraction
(ii)	$E(X^2) = \int_0^{0.1} 10x^2 \mathrm{d}x$	M1		Integration, correct limits, their k
	$= \left[{}^{10}/_3 x^3 \right] {}^{0.1}_0 = {}^{1}/_{300}$	A1		Or at least 3sf equivalent
(iii)	$Var(X) = E(X^{2}) - E(X)^{2} = \frac{1}{300} - (\frac{1}{20})^{2}$	M1		Correct expression – allow use of 0.003 or 0.0033 or better for M1
	= $\frac{1}{1200}$ So sd = $\sqrt{(\frac{1}{1200})} = \frac{\sqrt{3}}{60} = 0.0289$	A1		Equivalent surd or AWFW 0.0288 to 0.0289 Correct answer but not derived from (ii) scores M0 B1.
			5	
			7	

Q5	Solution					Marks	Total	Comments
(a)	Expected values							
		<3	<12	None	Total			
	Petrol	12.0			215	M1		For attempt to find expected values
	Discol	4	36.98	3 165.98	3			(at least 2 correct) either before
	Diesei	1.90	0.02	27.02	250			or after combining. Allow rounding to
	Total	14	40	195	230			nearest integer or 1 d.p.
	Combine	e first tv	vo colu	imns				
	Observe	d				M1		For combining (at least 1 correct)
		Prob	lems	None	Total			
	Petrol	4	5	170	215			
	Diesel	1	2	23	35	A1		Combined Observed CAO
	Total	5	7	193	250			
	Expected		-			Δ1		Combined expected (both correct)
		Prob	lems	None	Total			Allow rounding to nearest integer or 1
	Petrol	49.	.02	165.98	215			d.p.
	Diesei	7.3	98 7	102	30			
	Total	5	1	195	230			
	(O - E) $3.52^{2} + 3$ 49.02 - 7 $(0.2527 - 2)^{-1} = 2.338$ 1 degree CV = 2.7 H_{0} : No as engine type 2.34 < 2 There is associatic and type	- 0.5 = <u>5.52²</u> + 7.98 + 1.552 of free 06 ssociat pe 706 (s no sigr on betw of engi	= 3.52 <u>3.52²</u> 165.98 26 + 0.0 edom ion bet so acce nificant veen m ne.	+ $\frac{3.52^2}{27.02}$ 0746 + 0. tween pro ept H ₀) evidence nechanica	4585) oblems and e of an al problems	M1 A1 B1 B1 A1 dep E1 dep		Attempt including Yates (at least 1 correct) AWRT 2.34 (Implies first 6 marks) PI by CV AWRT 2.71 Allow "problems independent of engine type" but not reverse or "they are independent" or simply "no association" Comparison or a diagram equivalent Dep on A1 for ts and B1 for CV OE Conclusion in context. Dep on previous A1
(b)	Depende associati No evide Go with ł	ent on a i on . Ince tha	a concl at diese ference	usion of els have e or buy (no more proble either.	ems E1 E1 dep	11	Even from incorrect working Use of result, however any additional suggestion that diesels may have more problems then E0 Or similar dep on previous E1
							13	
No Ya	ates: Can	score	M1, M	1, A1, A1	, M0, A0, E	81, B1, B1, A	0, E0 = 7	7 out of 11 $(\chi^2 = 3.05)$

No combining: Can score M1, M0, A0, A0, M0, A0, B1, B1 (for 2 d.o.f. giving 4.605), B1, A0, E0 = 4 out of 11 $(\chi^2 = 3.92)$

Just 2 cells combined (1.96 and 6.02) can score M1 M1 and B1 for hypotheses

Q6	Solut	ion	Marks	Total	Comments
(a)	H ₀ : μ = 18.2 (or μ ≥ 18 H ₁ : μ < 18.2	.2)	B1		For both. μ or "population mean"
	\bar{x} = 1384.5 ÷ 78 = 17.75		B1		CAO
	test stat = $\frac{.17.75' - 1}{.17.75'}$	<u>8.2</u>	M1		Condone 18.2 – '17.75' for M1
	(1.8 ÷ √78 = −2.208)	A1		AWRT –2.21 Must be negative
	$Z_{\rm crit} = \pm 2.0537$		B1		AWRT ±2.05
	−2.208 < −2.0537 o in critical region, reject H	r 2.208 > 2.0537 ₀ or accept H₁	A1 dep		Comparison stated or diagram Dep on previous A1 and B1
	There is significant evide significance to support G	ence at the 2% level of Gerald's belief.	E1 dep		Context conclusion. Dep on A1 dep. Definitive conclusions (Eg Gerald is correct) score E0. If not referring to belief, must use "mean" or "average"
	Alternative Calculation	of critical region		7	
	boundary value or using confidence interval H_0 and H_1 as above $\bar{x} = 1384.5 \div 78 = 17.75$ $Z_{crit} = \pm 2.0537$ $18.2 - 2.0537 \times 1.8$ 17.75 + 2.0537 × 1.8 $\sqrt{78}$ $\sqrt{78}$ $\sqrt{78}$				CAO. AWRT ±2.05 Must be subtracting/adding as appropriate AWRT
	17.75 < 17.78 so reject H_0 Context conclusion as a	18.2 > 18.17 so 18.2 above CI bove	(A1dep) (E1dep)		Comparison stated or diagram. Dep on previous A1 Dep on A1 dep
(b) (i)	$\bar{x} = 16.7, s = 1.94(3)$		B1		For both, CAO & AWRT 1.94 PI
	$t_6 = 2.447$		B1		AWFW 2.44 to 2.45
	16.7 ± 2.447 × '1.94' / √7	,	M1 m1		Use of √7 Their 1.94 & rest of formula correct
	= 14.9, 18.5 or 16.7 ± 1.8				AWRT 14.9, 18.5. Correct answer seen, no working
(ii)	18.2 (or the mean for mainland lizards) lies within this confidence interval so no evidence to support Gerald's belief.			7	snown scores all 5 marks. FT provided both M marks earned and CI includes 18.2 Must be a clear statement of this. Dep on A1 FT
(c)	$\bar{x} = 19.73$ which is > 18	.2	B1	2	Calculation and this comparison
	so cannot provide evider Gerald's belief.	nce to support	E1 dep		Accept 19.73 > mean on mainland Comment in context. Dep on B1
				16	

Q7	Solution	Marks	Total	Comments
(a)	Candidate's own grid used is acceptable.			Accept wobbly lines as straight if it seems candidate has no ruler
	Nothing drawn beyond 1 and 6 (or line at 0)	B1		Must be at least one line drawn somewhere on the diagram
	Differentiate to give $f(x) = \frac{1}{4}$ for $1 \le x < 4$	M1		Allow this M1 if seen in (b)
				PI by correct line
	Straight line joining (1, ¼) to (4, ¼)	A1		Candidate's choice of scale. BOD this horizontal line.
	$f(x) = \frac{1}{8}(6-x)$ for $4 \le x \le 6$	M1		OE Allow this M1 if seen in (b) PI by correct line
	Straight line joining (4, 1/4) to (6, 0)	A1	5	
(b)	$\int_{1}^{4} \frac{1}{4} x dx \text{and} \int_{4}^{6} \frac{1}{8} x (6 - x) dx$	M1 A1		For both integrands correct Including correct limits for both
	$E(X) = \left[\frac{x^2}{8}\right]_1^4 + \left[\frac{3x^2}{8} - \frac{x^3}{24}\right]_4^6$	A1		Integrations done correctly and added
	$= 3^{1}/_{24}$ or 73/24	A1	4	Or AWRT 3.04
			9	

